Bibliography

[1]

Marius Bickel, Michael Ponater, Ulrike Burkhardt, Mattia Righi, Johannes Hendricks, and Patrick Jöckel. Contrail cirrus climate impact: From Radiative Forcing to surface temperature change. Journal of Climate, 38(8):1895–1912, 2025. doi:10.1175/JCLI-D-24-0245.1.

[2]

Ulrike Burkhardt, Lisa Bock, and Andreas Bier. Mitigating the contrail cirrus climate impact by reducing aircraft soot number emissions. npj Climate and Atmospheric Science, 1(1):37, 2018. doi:10.1038/s41612-018-0046-4.

[3]

K. Dahlmann, V. Grewe, C. Frömming, and U. Burkhardt. Can we reliably assess climate mitigation options for air traffic scenarios despite large uncertainties in atmospheric processes? Transportation Research Part D: Transport and Environment, 46:40–55, 2016. doi:10.1016/j.trd.2016.03.006.

[4]

Katrin Dahlmann. Eine Methode zur effizienten Bewertung von Maßnahmen zur Klimaoptimierung des Luftverkehrs. PhD thesis, LMU München, München, 2011.

[5]

Christine Frömming, Volker Grewe, Sabine Brinkop, Patrick Jöckel, Amund S. Haslerud, Simon Rosanka, J. van Manen, and Sigrun Matthes. Influence of weather situation on non-CO2 aviation climate effects: the REACT4C climate change functions. Atmospheric Chemistry and Physics, 21(11):9151–9172, 2021. doi:10.5194/acp-21-9151-2021.

[6]

V. Grewe and A. Stenke. AirClim: an efficient tool for climate evaluation of aircraft technology. Atmospheric Chemistry and Physics, 8(16):4621–4639, 2008. doi:10.5194/acp-8-4621-2008.

[7]

Volker Grewe, Lisa Bock, Ulrike Burkhardt, Katrin Dahlmann, Klaus Gierens, Ludwig Hüttenhofer, Simon Unterstrasser, Arvind Gangoli Rao, Abhishek Bhat, Feijia Yin, Thoralf G. Reichel, Oliver Paschereit, and Yeshayahou Levy. Assessing the climate impact of the AHEAD multi-fuel blended wing body. Meteorologische Zeitschrift, 26(6):711–725, 2017. doi:10.1127/metz/2016/0758.

[8]

Ludwig Hüttenhofer. Parametrisierung von Kondensstreifenzirren für AirClim 2.0. PhD thesis, Ludwig-Maximilians-Universität München, München, 2013.

[9]

D.S. Lee, D.W. Fahey, A. Skowron, M.R. Allen, U. Burkhardt, Q. Chen, S.J. Doherty, S. Freeman, P.M. Forster, J. Fuglestvedt, A. Gettelman, R.R. De León, L.L. Lim, M.T. Lund, R.J. Millar, B. Owen, J.E. Penner, G. Pitari, M.J. Prather, R. Sausen, and L.J. Wilcox. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment, 244:117834, 2021. doi:10.1016/j.atmosenv.2020.117834.

[10]

Marianne T. Lund, Borgar Aamaas, Terje Berntsen, Lisa Bock, Ulrike Burkhardt, Jan S. Fuglestvedt, and Keith P. Shine. Emission metrics for quantifying regional climate impacts of aviation. Earth System Dynamics, 8(3):547–563, 2017. doi:10.5194/esd-8-547-2017.

[11]

L. Megill and V. Grewe. Investigating the limiting aircraft-design-dependent and environmental factors of persistent contrail formation. Atmos. Chem. Phys., 25(7):4131–4149, 2025. doi:10.5194/acp-25-4131-2025.

[12]

G. Myhre, K.P. Shine, G. Rädel, M. Gauss, I.S.A. Isaksen, Q. Tang, M.J. Prather, J.E. Williams, P. van Velthoven, O. Dessens, B. Koffi, S. Szopa, P. Hoor, V. Grewe, J. Borken-Kleefeld, T.K. Berntsen, and J.S. Fuglestvedt. Radiative forcing due to changes in ozone and methane caused by the transport sector. Atmospheric Environment, 45(2):387–394, 2011. doi:10.1016/j.atmosenv.2010.10.001.

[13]

Ulrich Schumann. On conditions for contrail formation from aircraft exhausts. Meteorologische Zeitschrift, 5(1):4–23, 1996. doi:10.1127/metz/5/1996/4.

[14]

David S. Stevenson, Ruth M. Doherty, Michael G. Sanderson, William J. Collins, Colin E. Johnson, and Richard G. Derwent. Radiative forcing from aircraft NOx emissions: mechanisms and seasonal dependence. Journal of Geophysical Research, 109(D17):D17307, 2004. doi:10.1029/2004JD004759.